Apache Sedona Tutorial for Data Engineers: Scalable Spatial Analytics with Spark

Apache Sedona Tutorial for Data Engineers: Scalable Spatial Analytics with Spark

Matt Forrest

55 лет назад

1,311 Просмотров

Course Files & Data: https://forrest.nyc/apache-sedona-tutorial-scalable-spatial-joins-and-geospatial-processing-with-spark/
📩 Get every update from my newsletter ➡️ https://forrest.nyc ⬅️

Add scalable spatial processing to your data engineering stack with Apache Sedona.
In this video, you'll get a hands-on walkthrough of how to use Apache Sedona with Spark to bring geospatial capabilities into your pipeline — no GIS background required.

You'll learn how to:
✅ Set up Sedona locally using Spark and Python
✅ Perform spatial joins and geometry operations at scale
✅ Work with satellite imagery
✅ Run everything interactively in a Jupyter Notebook
✅ Move the entire project to run in the cloud on Wherobots

Why this matters for data engineers: Modern datasets increasingly contain location data, from logistics to mobility to environmental sensors. Apache Sedona gives you the tools to query and process spatial data natively inside Spark, using SQL or PySpark, without switching to GIS-specific tools.

If you’ve used PostGIS, GeoPandas, or even Shapely before and hit performance limits, this is your path forward.

👥 And if you want to connect with a community of modern spatial professionals, check out the Spatial Lab: https://forrest.nyc/spatial-lab/

0:00:00 Intro
0:01:34 Spark and Sedona for Geospatial Processing
0:04:00 Comparing Sedona, GeoPandas, PostGIS, and DuckDB
0:10:27 Spatial Lakehouse Architecture
0:12:57 Sedona Intro & Course Set Up
0:14:19 Docker Spark and Sedona Install
0:18:06 Local Spark and Java Install
0:24:46 Understanding Spark Set Up
0:26:46 Sedona Basics
0:35:40 Spatial Spark Dataframes (Vector Data)
0:43:41 Raster Imagery in Sedona
0:53:01 Visualizing Geospatial Data in Sedona
0:56:00 Vector Functions in Sedona
1:07:38 Spatial Joins and Relationships in Sedona
1:13:56 Writing Spatial Data with Sedona
1:19:03 K-Nearest Neighbor Spatial Join in Sedona
1:24:45 Raster Functions in Sedona
1:32:01 Map Algebra and NDVI in Sedona
1:37:15 Raster/Vector Join in Sedona (Zonal Statistics)
1:41:53 Geopandas and Rasterio Compatibility with Sedona
1:43:47 Cloud-Native Sedona with Wherobots

Тэги:

#gis #data_science #spatial_data_analysis #geospatial #modern_gis #matt_forrest #spatial_analysis #arcgis #esri #qgis #geospatial_python #gis_technology #geocoding #location_data #earth_observation #remote_sensing #satellite #geospatial_data #spatial_join #spatial_analytics #geopandas #apache_sedona #dataplor #spatial_data #location_intelligence #geospatial_analytics #apache_spark #postgis #data_engineering_projects #data_engineering #databricks #snowflake
Ссылки и html тэги не поддерживаются


Комментарии:


골프스윙 몸은 이렇게!! 송단프로 골프채널 [Song Dan Golf]
Можно ли сохранить машину при банкротстве Александр Клушин - Банкротство Физических Лиц